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Abstract 
Social concern and disapproval of offshore wind by coastal communities causes delays and costs 
to offshore wind development. One concern is property value impacts stemming from a loss of 
pristine ocean views. We evaluate this concern using the Block Island Wind Farm (BIWF), the 
first of its kind in the United States. While the BIWF has fewer turbines than currently proposed 
offshore wind developments, it is situated about 26 kilometers [16 miles] from the Rhode Island 
mainland, which is a policy relevant distance, given that proposed US developments tend to be 
21 to 32 kilometers from coastlines. Using properties from the mainland, we estimate difference-
in-differences hedonic valuation models with treatment defined by views of BIWF. Across many 
specifications and samples, we find no evidence of negative impacts to property values. 
Coefficient estimates are both negative and positive, but none are statistically distinguishable 
from zero. We additionally estimate hedonic models using properties on Block Island, which is 
only 4.8 kilometers from the BIWF, meaning the BIWF is more of a visually dominant feature 
there as compared to the mainland. These models similarly find insignificant effects of views. In 
sum, our findings suggest that the viewshed impacts of the BIWF were minimal.  
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1  Introduction 

Fossil fuels are still the dominant source of energy production. In 2020, fossil fuel 

consumption represented approximately 80% of energy use in the US (EIA). Burning fossil fuels 

generates pollution, both criteria pollutants that lead to adverse health impacts and carbon 

emissions that cause climate change. To address this issue, the US has increased the use of 

renewables, which are clean and sustainable. Recently, the development of wind energy has 

increased significantly. According to the Department of Energy (DOE), cumulative US wind 

capacity increased from 40.35 GW in 2010 to 121.99 GW in 2020. While virtually all this 

increase has been onshore, in the future offshore wind farms (OSWFs) will likely be a large 

component of the portfolio (NREL).  

However, concerns persist about OSWFs that can inhibit development. There are 

ecological concerns related to whales, birds, and marine habitats, and anthropocentric concerns 

about spoiled ocean views and impacts to tourism. In a 2021 hearing before the Maryland Public 

Service Commission regarding awarding offshore renewable energy certificates for proposed 

OSWFs (docket 9666), the mayor of Ocean City, Maryland, Richard Meehan, submitted written 

testimony that  

“Ocean City’s concern is that if the wind turbines are built within Ocean City’s 

viewshed, this will have a significantly damaging effect on Ocean City’s tourism and 

economy… Ocean City prides itself on its pristine views, which will no longer be 

pristine if the turbines are visible from shore… If there are more turbines, some as close 

as 13 miles from shore, this will have a negative effect on property value. If the 
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appraised value of properties decrease, this will adversely affect the tax revenue 

collected by Ocean City.”1  

While the claims about property values were unsubstantiated in the testimony, they are very real 

concerns for Ocean City and many other coastal communities.  

The objective of this article is to evaluate concerns regarding property value impacts of 

OSWFs using the Block Island Wind Farm (BIWF), the first OSWF in the United States. 

Completed in August 2016, the BIWF consists of five six-megawatt turbines, each with a hub 

height of 100 m and a blade length of 75 m.2 The BIWF is located about 4.8 km [3 miles] off the 

southeast coast of Block Island, Rhode Island, and the turbines are arrayed perpendicular to the 

angle of viewing from Block Island and spaced about 835 m apart (see Figure 1). The BIWF is 

about 26 km [16 miles] from the Rhode Island mainland. While currently proposed OSWF 

developments will have more turbines than BIWF, they tend to be sited 21 to 32 km from 

coastlines (BOEM), which makes the effect of BIWF on mainland housing prices a valuable data 

point to understand impacts of future developments.  

We apply the hedonic valuation method and focus on property-specific turbine view as 

the key feature of BIWF that could impact property values. Any change in property value reflects 

people’s preferences for turbine views improving or contaminating their ocean views. We 

construct a dataset that contains 11,058 mainland transactions over the years of 2005 to 2020 for 

properties that are within 3 km of the coast. We use LiDAR Digital Surface Model data to assess 

views of the turbines as well as views of water. We estimate cross-sectional and repeat sales 

difference-in-differences models using turbine view as treatment. In addition to water views, we 

                                                           
1 https://webapp.psc.state.md.us/newIntranet/casenum/CaseAction_new.cfm?CaseNumber=9666 
2 The below water foundations and above water platforms were completed during September and October 2015 
(Shuman 2015). The platforms heights were 21 m above the water, and thus would not be visible from the mainland. 
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also control for proximity to the coast and property characteristics and include a rich set of 

temporal and spatial fixed effects. Identification is buoyed by micro-variation in viewshed. Due 

to the presence of trees and buildings, a house with a view of the turbines could be next door to a 

house without views.  

The results suggest that property values are not impacted by turbine views. The treatment 

effect coefficients from the primary difference-in-differences models range from -0.4% to 12.4% 

change in value for properties with a turbine view relative to those without. However, all 

coefficients are not statistically different from zero, implying no statistical impact. We perform 

many robustness checks that limit the distance from the coast needed to be in the sample and 

even include only properties that have a water view, as well as including only transactions 2010-

2020. In all, the results are qualitatively identical to the main findings with both positive and 

negative point estimates, none of which are statistically distinguishable from zero. These 

findings suggests that the BIWF has had no adverse impact on mainland housing prices. As for 

water view and proximity to the coast, most models display positive and significant estimates, 

confirming intuition that houses that have a water view or that are adjacent to a waterbody tend 

to have higher value.  

We also explore whether views of the BIWF affect property values on Block Island itself. 

These models are not our main focus both because data are limited and the results are less 

relevant for future OSWFs due to the close proximity. Despite this, they are still a useful 

complement. Intuitively, if there are negative impacts of turbine views, they would be stronger 

on Block Island than on the mainland. However, similar to our main results, we find no statistical 

impact of the BIWF viewshed on Block Island property values.   
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Our study contributes to two literatures. First, we expand the hedonic valuation of 

renewable energy literature. To date, there is only one article examining the property value 

impacts of OSWFs. Jensen et al. (2018) examine price effects of two, large OSWFs on both 

primary and secondary residences in Denmark. They similarly find that views of the turbines do 

not have a statistical impact on either type of property. Many articles have examined property 

value impacts of onshore wind turbines with mixed results, with some focusing on proximity and 

others incorporating viewshed (see Parsons and Heintzelman (2022) for a review). Within the 

United States, while Heintzelman and Tuttle (2012) find some evidence of negative impacts, 

studies with larger numbers of observations close to turbines find no significant impact on 

property prices (Lang et al. 2014, Hoen et al. 2015, Hoen and Atkinson-Palombo 2016). In 

contrast, studies in European countries consistently find that wind turbines have a significant 

negative impact on nearby properties, though the magnitude of the effect differs by region 

(Gibbons 2015, Sunak and Madlener 2016, Dröes and Koster 2021, Jarvis 2021). Using 

Canadian data, Vyn (2018) finds heterogeneous impacts that are dependent on community 

acceptance. More recently, several papers have applied hedonic valuation to assess disamenities 

associated with proximity to utility-scale solar arrays. Abashidze (2019) and Gaur and Lang 

(2020) find negative impacts working in North Carolina and New England, USA, respectively. 

However, Jarvis (2021) finds no statistical impact in England.  

This paper also contributes to the literature that examines offshore wind acceptance. 

Firestone et al. (2018) study perceptions of permanent residents on Block Island and mainland 

Rhode Island both before and after construction and find average support increases for both 

groups following construction. Other research tends to focus on tourists and their stated 

willingness to visit a location with turbines in view, often varying distance from shore. In 
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general, results suggest large disamenities when OSWFs are near shore, but the effects decrease 

with distance, eventually becoming zero or even positive (Landry et al. 2012, Lutzeyer et al. 

2018, Parsons et al. 2020). Trandafir et al. (2020) examine stated recreation preferences of Block 

Island tourists. On average, respondents are indifferent to activities with and without turbines in 

view, but those who know about or have seen the BIWF are more likely to choose the with 

turbine option. The sole revealed preference research in this vein is Carr-Harris and Lang (2019), 

who analyze the short-term vacation rental market and find increases in bookings and revenue 

for Block Island properties following the construction of the BIWF relative to other New 

England tourist destinations. We contribute to this area of research by offering another revealed 

preference study and focusing on property owners instead of tourists.  

 

2  Data 

2.1  Housing transactions 

We use ZTRAX housing transaction data from Zillow (http://www.zillow.com/data). The 

dataset includes sales prices, street addresses, geographic coordinates, Census divisions, 

transaction dates, and property characteristics (bedrooms, bathrooms, etc.). Prices are adjusted 

for inflation and brought to quarter 3, 2020 levels using RI quarterly HPI (Federal Housing 

Finance Agency). Figure 1 displays the study area: the southern coastal area (Westerly, 

Charlestown, South Kingstown, and Narragansett) of Rhode Island. 

 We excluded transactions with sales prices below $100,000, excluded condo 

transactions, limited the geographic scope to properties within 3km of the coast, and limited the 

temporal scope to transactions from 2005 to 2020. We also exclude transactions that occur 
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before a renovation was done.3 The final dataset used for regression includes 11,058 

transactions. 

 

2.2  GIS  

All GIS analyses were conducted using ArcGIS Pro 2.8 including the creation of the 

Digital Surface Model (DSM) raster, the calculation of the distances to the coast and the nearest 

turbine, and viewshed analyses including turbine view and water view. 

The geospatial data, including RI boundary, LAS data, and coastal water area were 

acquired from State Boundary (1997), 2011 Statewide LiDAR - UTM (LAS), and Coastal 

Waters in the Rhode Island Geographic Information System (RIGIS). We observed Zillow 

geographic coordinates to be inaccurate based on overlay with satellite imagery. Instead, we 

geocoded properties using Google Sheets to create point features for all sample properties, and 

confirmed that these were accurate. BIWF turbine coordinates were obtained from Waterway 

Guide, and we used these to create a second point feature shapefile. We calculated distance to the 

coast and distance to the nearest turbine for all sample properties.  

 

2.3  LiDAR Digital Surface Model 

LiDAR (light detection and ranging) is a popular remote sensing method used for 

measuring the exact height of an object. A LiDAR system measures the time it takes for emitted 

light to travel to an object and back. That time is used to calculate distance traveled, and then 

convert the distance to elevation. LiDAR can be used to create both Digital Elevation Models 

                                                           
3 The data include whether a renovation was done and, if so, in which year. Because the property characteristics are 
for the current time only, including transactions pre-renovation would assign incorrect property characteristics to a 
sale and possibly bias results.  
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(DEM) and Digital Surface Models (DSM). DEM only measure topography of the Earth’s 

surface, and viewshed analysis using DEM will account for hills, valleys, and curvature of the 

Earth. In contrast, DSM additionally measures objects like trees and buildings, and thus will 

better model actual visibility by accounting for these obstructions.  

The LiDAR data (RIGIS) were collected in 2011 during leaf-off conditions at a 1-meter 

or better nominal point spacing (1m GSD) for approximately 1,074 square miles of Rhode 

Island. We used the LAS files, which contain Lidar point clouds to create the (Digital Surface 

Model) DSM raster for view analysis. The DSM was created by using the first returned pulses 

(first returns), which are associated with the highest feature in the landscape, like a treetop or the 

top of a building. The DSM represents the elevations of the tops of features. We used the 

linear interpolation method to fill data gaps, and the pixel size was 1 meter. We used a geodesic 

viewshed tool to conduct viewshed analysis. This tool generates the raster surface locations 

visible to a set of observer features. For the turbine view analysis, we used turbine points as the 

observers, and the houses are the points being observed because line-of-sight views are 

symmetric.4 The turbine height we used is 100 meters, which is the hub height (General Electric 

2021). To assess properties’ views of the water, we created many observer points in the ocean, 

bay, and coastal salt ponds, and similarly determined whether individual properties were visible 

from any of the water points.5 In our hedonic model, we distinguish between ocean views and 

pond views.  

We set turbine view and water view output raster to have a pixel size of two meters. This 

improves processing efficiency and is sufficient for property analysis. As we did not have a GIS 

                                                           
4 If the viewshed analysis was done the opposite, more intuitive way, the results would be identical, but the 
processing time would take much longer. 
5 The ocean view points are 2 km from the coast and spaced about 3 km apart. See Figure A1 in the appendix for a 
map of all water view points.  
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layer of house footprint, instead only a single point, we created 5-meter buffers around all 

housing points, and then overlaid those buffers with the viewshed rasters to determine property 

specific views of turbines and water.6 For turbine views, we create a dummy variable equal to 

one if any pixel in the 5-meter buffer can see any of the turbines (specifically, the hubs). For 

ocean view and pond view, we create count variables that equal the number of ocean and pond 

points that can be seen in the 5-meter buffer. This count approach distinguishes between 

properties with a lot of water view versus just a little.  

Figure 2 illustrates our findings for turbine viewshed for a small area and communicates 

an important aspect of our identification strategy. Due to micro-variations in tree cover, 

buildings, and elevation, houses in close proximity can still have different views of the BIWF. 

Hence, we can control for spatial unobservable variables without capturing all of the variation in 

turbine views.  

Our LiDAR DSM approach to viewshed is an improvement over other ways to get 

objective measurement over a large area. In previous studies, some researchers simply used 

distance as the measurement of the impact of wind turbines and conducted no viewshed analysis 

(Heintzelman and Tuttle 2012, Hoen et al. 2015, Hoen and Atkinson-Palombo 2016, Vyn 2018, 

Dröes and Koster 2021). In studies including turbine view as a measurement of the impact, 

viewshed calculation can be classified into three main categories: field visits for subjective 

assessment (e.g., Hoen et al. 2011, Lang et al., 2014), Digital Elevation Model (DEM) (e.g., 

Gibbons 2015, Jarvis 2021), and DSM (e.g., Sunak and Madlener 2016).7 Field visits are only 

feasible with a small sample size and could be constrained by inaccessible properties. DEM only 

                                                           
6 A 5-meter buffer was chosen because these would likely cover most of a typical house without including 
surrounding trees. 
7 Jensen et al. (2018) focus on view as their key independent variable, but do not discuss how they calculated it. 
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measures the elevation of bare earth without above-ground features, like trees and buildings, and 

hence is less accurate.  

 

2.4  Summary statistics 

Table 1 presents summary statistics for our sample properties. The average sales price for 

the sample is $560,160 in 2020 dollars. Average structural characteristics are 3,590 square feet 

of living space, 3.11 bedrooms, and 2.37 bathrooms. The average distance to a coastal waterbody 

is 0.81 km. The average number of visible ocean points is 0.41 (with a 95th percentile of 3) and 

the average number of visible pond points is 0.06. The average distance to a wind turbine is 34 

km (21 miles). The range of distances to the nearest turbine is 27 to 44 km (17 to 27 miles). 

Proposed offshore wind developments are typically in the range of 21 to 32 km offshore. For 

example, Revolution Wind is proposed to be 24 km (15 miles) offshore of Massachusetts, 

Skipjack is proposed to be 31 km (19 miles) offshore of Deleware, and South Fork Wind is 

proposed to be 56 km (35 miles) offshore of Long Island (though closer to Rhode Island and 

Massachusetts).  

Our key treatment assignment variable is Turbinview. Our analysis indicates that about 

15% of properties have a turbine view. Treatment occurs in August 2016, when the above water 

construction occurs, and 30% of transactions occur after that time. About 5% of properties 

transact in August 2016 or later and have turbine views. This set of properties will provide key 

identifying variation in our difference-in-differences model that we discuss next.   
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3  Methods 

We develop a difference-in-differences (DD) hedonic model to examine the impact of 

turbine view on property values. The basic identification strategy is to compare properties with 

an eventual view of the turbine to those without from before the view was realized to after. The 

DD model identifies the treatment effect from differences in trends instead of differences in 

levels, which mitigates several concerns stemming from differences between properties with 

turbine views and those without. However, we develop a rich set of control variables to account 

for those potential differences. Importantly, we include ocean view, pond view, and coastal 

proximity in our model because these variable are extremely likely to be correlated with both 

turbine view and price. Our model is specified as follows: 

(1) ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝛽𝛽1𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡_𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝛽𝛽4𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 + 𝛽𝛽5𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 + 𝑿𝑿𝒊𝒊𝜷𝜷𝟔𝟔 + 𝜋𝜋𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) is the natural log of sales price of property 𝑝𝑝 that transacts in month 𝑚𝑚 and year 

𝑡𝑡. 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 is a dummy variable equal to one if the property has a turbine view once the 

turbines are built. 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 is a dummy variable equal to one if the transaction occurs in August 

2016 or after. 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡_𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 is the interaction of 𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖 and hence 

equals one if the property has a turbine view and the transaction occurs in August 2016 or after. 

𝛽𝛽3 is the key DD coefficient of interest. If 𝛽𝛽3 < 0, this would imply that views of the BIWF 

reduce property value. 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 are integer values equal to the number of 

ocean and pond points that can be seen from a property. 𝑿𝑿𝒊𝒊 is a set of property-specific, time-

invariant control variables, including structural characteristics (e.g., bedrooms and bathrooms), 

and a set of dummy variables defined by distance to the coast (0-0.1 km, 0.1-0.25 km, 0.25-0.5 
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km, and 0.5-1 km), Lastly, 𝜋𝜋𝑖𝑖 are month fixed effects and 𝛾𝛾𝑖𝑖 are year fixed effects to control for 

common price fluctuations in the housing market.  

We estimate three versions of this model. First, as it is described above. Second, we 

additionally include block group fixed effects to control for unobserved, spatially delineated 

price determinants. Third, we estimate a repeat sales model that includes property fixed effects, 

which captures all observed and unobserved property and location characteristics. The second 

and third model are our preferred specifications due to their ability to deal with unobservables.  

 

3.1 Assumptions 

 The key assumption for DD models is the parallel trends assumption, which means that 

the trends between treatment and control properties would be the same in the absence of 

treatment. This is of course untestable because treatment does occur. However, we can examine 

price trends in the pre-treatment period (pre-August 2016) to assess if trends are similar. Figure 3 

plots average price trends for properties that eventually have a view of the turbines and 

properties that never have a view of the turbines. Price trends are quite similar before 

construction of the BIWF suggesting that the parallel trends assumption is reasonable and 

properties without a view do serve as a good counterfactual for properties with a view. The 

figure also indicates that price trends are similar after construction too, suggesting that views of 

BIWF had little impact on prices. We explore price impacts more rigorously in the next section.   

 A second assumption we make is that expectations of views of BIWF are not anticipated 

and are not capitalized into housing prices prior to August 2016. Prior research has shown that 

expectations of future events do affect housing prices (e.g., Boslett et al. 2016), and some 

hedonic studies of wind turbines do model a post-siting-decision pre-construction time period to 
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assess if there is an anticipation effect (Lang et al. 2014, Hoen and Atkinson-Palombo 2016). 

While the BIWF was known about well in advance, and as mentioned in the introduction the 

platforms were completed in October 2015, our intuition is that the specific viewshed on the 

mainland was not known until the towers and blades were constructed. Our LiDAR DSM 

analysis reveals substantial within-block group heterogeneity in views. Thus, we are assuming 

that no household forms expectations about the specific views of the turbines that they will or 

will not have. Importantly, however, as we observe in Figure 3, at no time pre-treatment is there 

a discernable difference in the trends, which suggests no anticipatory treatment effect.  

 Lastly, we assume that property attributes are time invariant. In terms of structural 

changes to houses, we mitigate this concern by excluding transactions that predate renovations. 

Water view is a key independent variable, which could change over time as trees grow or are cut 

down or new houses are built. However, we have no reason to believe that any time variation in 

property attributes would be correlated with turbine views.  

 

4  Results 

Table 2 presents the main results of the impact of offshore wind turbine views on housing 

prices. Column 1 is the most basic model and includes only property characteristics (including 

structural attributes, water views, and proximity to the coast dummies), and year and month fixed 

effects. Column 2 adds Census block group fixed effects. Column 3 adds property fixed effects 

and removes all time-invariant property control variables. 

The top three rows present the DD coefficients, with the third row being the key 

coefficient of interest, which is the impact of turbine view on housing prices. The coefficient on 

Post turbineview is small and negative in Columns 1 and 2, but becomes large and positive in the 
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repeat sales model (Column 3). Because log sale price is the dependent variable, we can interpret 

the coefficients approximately as percent change due to treatment. Thus, the results suggest that 

views of the BIWF changed housing prices by -0.4% to 12.4%. However, all of these 

coefficients are statistically insignificant, meaning we cannot reject views having no effect on 

prices. Large decreases in property values are statistically inconsistent with the observed data. 

The coefficients on Turbineview are positive but statistically insignificant. In part, we interpret 

this to mean our other control variables (particularly water view and coastal proximity) are 

capturing differences between properties with and without eventual turbine views.8 The 

coefficient on Post is also insignificant, which makes sense given the inclusion of month and 

year fixed effects.  

Other coastal amenity variable coefficients have expected signs and magnitudes, which 

bolsters confidence in our modeling strategy. In Columns 1 and 2, the coefficient on Ocean view 

is positive and statistically significant. In Column 1, the coefficient of 0.084 means that for every 

ocean point visible from a property, the price increases 8.4% on average. As we said in the 

introduction, the 95th percentile for Ocean View is three, meaning that property derives a price 

bump of over 25% relative to a similar property with no ocean view. The Pond view coefficients 

are smaller in magnitude and statistically insignificant. Our results indicate that proximity to the 

coast is highly valued. In Column 1, the results suggest that, on average, properties within 0.1 

km of the water sell for over 96.6% more than houses 1-3 km from the water, all else equal.9 The 

other distance dummies imply that properties located 0.1-0.25 km from the coast sell for 44.2% 

                                                           
8 If we estimate a version of the DD model without water views and coastal proximity dummies, the coefficient on 
Turbineview is positive and highly statistically significant.  
9 As noted earlier, when the dependent variable is log transformed, coefficients can be interpreted approximately as 
percent change. However, this is less accurate the larger coefficients become, in which case a formal transformation 
should be used. In this case, the coefficient of 0.676 is translated into percentage terms by exponentiating, 𝑝𝑝0.676 −
1 = 0.966, implying a 96.6% increase in property value.  
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more than properties 1-3 km away, properties located 0.25-0.5 km away sell for 30.3% more, and 

properties located 0.5-1.0 km away sell for 14.6% more. Similar to Ocean view, the magnitude 

of these premiums decline substantially as block group fixed effects are added, which makes 

sense given the spatial correlation between these variables. In contrast, the coefficient on Post 

turbineview varies little when block group fixed effects are added. We hypothesize this to be the 

case because of the micro-variation in turbine viewshed, which is much less spatially correlated 

than water view or distance. This is a clear benefit of using LiDAR DSM data to determine 

viewshed, as opposed to a simpler metric.  

 

4.1 Robustness checks 

We now test the robustness of our results along two dimensions: distance from the coast 

restrictions and temporal restrictions. We want the comparison group of properties without a 

turbine view to be as similar as possible to those with a turbine view. Even with our extensive set 

of control variables in Table 2, it is possible that properties further from the coast are not a good 

control group. To assess this concern, we estimate our models using only properties that are 

within successively smaller distance bands from the coast. Our main models in Table 2 have a 

distance restriction of 3 km; we additionally test distance restrictions of 2 km and 1 km. Finally, 

we include only properties that have a view of the water (either ocean or coastal salt pond). In 

this very restrictive sample, we are comparing properties with a view of the turbines and a view 

of the water to those properties that just have a view of the water. In terms of temporal 

restrictions, we additionally estimate our models using only transactions from the time period 

2010-2020, whereas the main results use transactions 2005-2020. Two concerns exist with the 

longer time window. First, 2005-2009 contains the peak and crash of the housing market, which 
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could have affected properties with and without ocean views differently. Second, the long time 

period increases the chance that the hedonic function changes over the course of the sample 

(Kuminoff and Pope 2014).  

Table 3 presents the results of robustness checks for these two extensions. In all, the table 

presents results from 16 regression models. Panel A uses the cross-sectional model (same as 

Column 2 of Table 2) and Panel B uses the repeat sales model (same as Column 3 of Table 2). 

The first set of four columns uses the sample period 2005-2020 and the second set of four 

columns uses 2010-2020. The distance and water view restrictions are listed at the top of each 

column with sample restrictions increasing with successive columns in each set. Across all 

models, we find that these sample restrictions have little impact on results. The estimated 

coefficients range from -0.016 to 0.168, but none are statistically different from zero, similar to 

the results in Table 2. In both panels, standard errors grow as restrictions are imposed, which 

makes sense because the sample size is decreasing. For instance, less than 10% of transactions 

included in the main sample are included in the repeat sales sample of properties with an ocean 

view.  

Additional robustness checks are presented in the online appendix. Tables A1 and A2 

examine results when the sample is restricted to areas of the mainland that have views of BIWF 

unobstructed by Block Island itself. Table A3 excludes all properties within 1000 m from the 

east boundary of Narragansett but not the south boundary. The idea being that those houses are 

more likely to have peripheral views of the turbines instead of direct. Table A4 allows for 

heterogeneous treatment effects as a function of distance to the turbines. Table A5 changes the 

post treatment date to October 2015 in case platform construction is the correct treatment date. 

Tables A6 and A7 replace the binary variable Turbineview with a variable Turbineview count 
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that equals the number of turbines visible from a property.10 Across all of these tables, treatment 

effect coefficients similarly range from negative to positive and are never statistically 

significantly different than zero.  

Taken together, these results suggest that the ability to see offshore turbines that are at 

least 27 km (17 miles) away have no impact on property value.  

 

4.2 Turbine view from Block Island 

In this section, we examine the impact of turbine view on sales prices using only 

properties from Block Island. Because the turbines are only 4.8 km from shore at the nearest 

point, this is unlikely to be a relevant distance for future offshore wind developments. However, 

for the sake of completeness, we still feel it is worthwhile to present the results.  

There are far fewer observations and as a result we modify our model. After the same 

sample cuts as the mainland sample, there are only 307 transactions during 2005-2020. We move 

away from DD and instead estimate a simpler cross sectional model, as follows:   

(2) ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖) = 𝛽𝛽1𝑃𝑃𝑝𝑝𝑝𝑝𝑡𝑡_𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 + 𝑿𝑿𝒊𝒊𝜷𝜷𝟑𝟑 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

All variables are as defined in Equation 2, except 𝑿𝑿𝒊𝒊, which is a stripped down set of controls.11  

Summary statistics for this sample are presented in Table A8 of the online appendix. 

Compared to houses on the mainland, houses on Block Island have similar structural 

characteristics, but there are other important differences. The average sales price on Block Island 

                                                           
10 Alternatively, one could examine heterogeneity in views based on which portions of turbines are visible, such as 
hub, blades, or platform. We leave this for future work.  
11 If we estimate a DD model for the Block Island sample, the resulting coefficients suggest overfitting or 
insufficient degrees of freedom. Across many different specifications, the coefficients on 𝑃𝑃𝑝𝑝𝑝𝑝𝑡𝑡_𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 and 
𝑇𝑇𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡 are near-equal in magnitude and opposite in sign. Thus, we do not trust these results. In Equation 2, 
the matrix 𝑿𝑿 includes lot size, lot size squared, number of bedrooms, number of bathrooms, a quadratic polynomial 
of construction year, and dummy variables for coastal proximity. Given the evidence of overfitting, we opted for a 
slightly more parsimonious model. Also, given the relatively small number of observations in this analysis, 
estimating a repeat sales model is untenable. 
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is $1,294,090 in 2020 dollars, which is considerably more than double average prices on the 

mainland. Also, the average distance to a coastal waterbody is 0.52 km with a maximum distance 

of 1.7 km, and 94% of transactions have a water view (Ocean view + Pond view >0). The 

average distance to a wind turbine is 7.7 km (4.8 miles) and 20% of transactions have a turbine 

view. The range of distances to the nearest turbine is 5 to 12 km (3.1 to 7.5 miles). 

Table 4 presents the results of the Block Island analysis. We present two columns that 

only differ by included years: 2005-2020 in Column 1 and 2010-2020 in Column 2. The turbine 

view coefficients are negative but statistically insignificant in both columns. This implies that 

views of the BIWF similarly have no statistical impact on housing prices on Block Island.12 

Similar to the results from on the mainland, ocean view is highly valued and statistically 

significant. In terms of distance to the coast, the results suggest large premiums for proximity. 

Houses within 0.1 km are about 74% more expensive than those greater than 0.5 km away, and 

houses between 0.1 and 0.25 km are 28% – 31% more expensive. 

 Another possibility to consider is that there is an island-wide treatment effect of BIWF, 

meaning that all house values are similarly negatively (or positively) impacted resulting in no 

differential impact to those properties with turbine views. Carr-Harris and Lang (2019) took this 

approach arguing that the island is small enough and the turbines prominent enough that any 

tourist visiting the island would have a hard time avoiding them. They estimate a difference-in-

differences model comparing trends in the short-term rental market on Block Island to other New 

England tourist destinations. As a first step toward undertaking this type of analysis with 

                                                           
12 Residents on Block Island could actually see the turbine platforms starting in October 2015, though to be clear the 
viewshed would be considerably smaller than after the full tower is complete. Given this, it is possible that the post 
treatment period should be defined as starting in October 2015. Appendix Table A9 examines results with this 
altered post definition and results are similar. We present an additional robustness check in Appendix Table A10 
that uses island region fixed effects for the three regions (North, Southeast, Southwest) instead of block groups. 
Results are qualitatively identical.  
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property transactions, we compared time trends in average Block Island prices to those of 

Martha’s Vineyard and Nantucket Island. We present this graph in the appendix as Figure A3. 

The trends are far from parallel pre-treatment: the trend for Block Island is much flatter than the 

other two locations. We are unsure why this is the case, but the disparity in trends far predates 

construction of BIWF. Thus, we conclude that this type of analysis is inappropriate for these data 

and would likely lead to biased results.  

 

5  Conclusion and Policy Implications 

 In the coming decades, offshore wind energy capacity is expected to greatly increase in 

the United States. This shift will be unambiguously good for greenhouse gas emissions 

reductions, but many coastal communities are concerned about local impacts to their livelihood. 

This article examines one concern related to property value declines due to a loss of pristine 

ocean views. In the tradition of non-market valuation and applying the tool of hedonic valuation, 

we are estimating the valuation of turbine views by property owners. Much of the literature to 

date focuses on tourist perceptions or valuation, so we offer a complementary and much needed 

perspective.  

 We examine the price impacts of mainland, coastal Rhode Island properties, which range 

in distance from 27 to 44 km (17 to 27 miles) to the BIWF, a five-turbine, 30 MW installation 

located in state waters. A critical aspect of our analysis is the use of LiDAR DSM data to 

comprehensively assess property-specific turbine views. Not only is this an improvement over 

other methods of determining viewshed, but it yields micro-variation in viewshed that improves 

estimation of impacts. Using a variety of specifications and samples, we find no evidence of 

adverse impacts due to views of BIWF. Our results consistently indicate point estimates that 
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range from small and negative to large and positive, but all are not statistically different than 

zero. We conclude that property owners in coastal areas do not value ocean views with turbines 

any differently than ocean views without turbines.  

 Future OSWFs will be comprised of larger turbines and more turbines spaced further 

apart. It is an open question whether valuation of these types of OSWFs will be the same as we 

find for the BIWF. Our secondary finding that turbine views also do not significantly impact 

property values on Block Island is useful in this regard. Larger turbines of future OSWFs will be 

slightly larger on the horizon than BIWF is from the mainland, but will never be as visually 

prominent as the BIWF is from Block Island. Thus, we would expect similarly negligible effects. 

Regardless, future research should examine property value impacts of these larger OSFWs. In 

addition, with many OSFWs, greater potential for analysis of heterogeneity will exist – related to 

size of turbines, number of turbines, distance from the coast, and direct vs. peripheral views.  

  



21 

References 
Abashidze, N. (2019). Essays on Economic and Health Effects of Land Use Externalities. [North 

Carolina State University]. https://repository.lib.ncsu.edu/handle/1840.20/38420 
BOEM. Outer Continental Shelf Renewable Energy Leases. 

https://www.boem.gov/sites/default/files/documents/oil-gas-
energy/Renewable_Energy_Leases_Map_Book_March_2021_v2.pdf. Accessed November 
22, 2021 

Boslett, A., Guilfoos, T., & Lang, C. (2016). Valuation of expectations: A hedonic study of shale 
gas development and New York’s moratorium. Journal of Environmental Economics and 
Management, 77, 14-30. 

Carr-Harris, A., & Lang, C. (2019). Sustainability and tourism: The effect of the United States’ 
first offshore wind farm on the vacation rental market. Resource and Energy Economics, 57, 
51–67. https://doi.org/10.1016/j.reseneeco.2019.04.003 

DOE. Land-Based Wind Market Report: 2021 Edition Data. 
https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2021-edition-
released. Accessed November 8, 2021  

Dröes, M. I., & Koster, H. R. (2021). Wind turbines, solar farms, and house prices. Energy 
Policy, 155, 112327. 

EIA. U.S. energy facts explained. https://www.eia.gov/energyexplained/us-energy-facts/. 
Accessed November 10, 2021 

Federal Housing Finance Agency. House Price Index. 
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx. Accessed 
November 10, 2021  

Firestone, J., Bidwell, D., Gardner, M., & Knapp, L. (2018). Wind in the sails or choppy seas?: 
People-place relations, aesthetics and public support for the United States’ first offshore wind 
project. Energy Research & Social Science, 40, 232–243. 
https://doi.org/10.1016/j.erss.2018.02.017 

Gaur, V., & Lang, C. (2020). Property Value Impacts of Commercial-Scale Solar Energy in 
Massachusetts and Rhode Island. Submitted to University of Rhode Island Cooperative 
Extension on September, 29, 2020. 

General Electric. https://www.ge.com/news/reports/block_island_wind_farm_construction. 
Accessed November 10, 2021 

Gibbons, S. (2015). Gone with the wind: Valuing the visual impacts of wind turbines through 
house prices. Journal of Environmental Economics and Management, 72, 177–196. 
https://doi.org/10.1016/j.jeem.2015.04.006 

Heintzelman, M. D., & Tuttle, C. M. (2012). Values in the wind: a hedonic analysis of wind 
power facilities. Land Economics, 88(3), 571-588. 

Hoen, B., & Atkinson-Palombo, C. (2016). Wind Turbines, Amenities and Disamenitites: Astudy 
of Home Value Impacts in Densely Populated Massachusetts. Journal of Real Estate 
Research, 38(4), 473–504. https://doi.org/10.5555/0896-5803-38.4.473 

Hoen, B., Brown, J. P., Jackson, T., Thayer, M. A., Wiser, R., & Cappers, P. (2015). Spatial 
hedonic analysis of the effects of US wind energy facilities on surrounding property 
values. The Journal of Real Estate Finance and Economics, 51(1), 22-51. 

Hoen, B., Wiser, R., Cappers, P., Thayer, M., & Sethi, G. (2011). Wind energy facilities and 
residential properties: the effect of proximity and view on sales prices. Journal of Real Estate 
Research, 33(3), 279-316. 

https://repository.lib.ncsu.edu/handle/1840.20/38420
https://www.boem.gov/sites/default/files/documents/oil-gas-energy/Renewable_Energy_Leases_Map_Book_March_2021_v2.pdf
https://www.boem.gov/sites/default/files/documents/oil-gas-energy/Renewable_Energy_Leases_Map_Book_March_2021_v2.pdf
https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2021-edition-released
https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2021-edition-released
https://www.eia.gov/energyexplained/us-energy-facts/
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx
https://www.ge.com/news/reports/block_island_wind_farm_construction
https://doi.org/10.1016/j.jeem.2015.04.006
https://doi.org/10.5555/0896-5803-38.4.473


22 

Jarvis, S. (2021). The Economic Costs of NIMBYism. 
Jensen, C. U., Panduro, T. E., Lundhede, T. H., Nielsen, A. S. E., Dalsgaard, M., & Thorsen, B. 

J. (2018). The impact of on-shore and off-shore wind turbine farms on property prices. 
Energy Policy, 116, 50–59. https://doi.org/10.1016/j.enpol.2018.01.046 

Kuminoff, N. V., & Pope, J. C. (2014). Do “capitalization effects” for public goods reveal the 
public's willingness to pay?. International Economic Review, 55(4), 1227-1250. 
https://doi.org/10.1111/iere.12088 

Landry, Craig E., Tom Allen, Todd Cherry, and John C. Whitehead. 2012. “Wind Turbines and 
Coastal Recreation Demand.” Resource and Energy Economics 34: 93–111. 

Lang, C., Opaluch, J. J., & Sfinarolakis, G. (2014). The windy city: Property value impacts of 
wind turbines in an urban setting. Energy Economics, 44, 413–421. 
https://doi.org/10.1016/j.eneco.2014.05.010 

Lutzeyer, S., Phaneuf, D. J., & Taylor, L. O. (2018). The amenity costs of offshore wind farms: 
Evidence from a choice experiment. Energy Economics, 72, 621-639.  

Parsons, G., Firestone, J., Yan, L., & Toussaint, J. (2020). The effect of offshore wind power 
projects on recreational beach use on the east coast of the United States: Evidence from 
contingent-behavior data. Energy Policy, 144, 111659. 

Parsons, G. & Heintzelman M. "The Effect of Wind Power Projects on Property Values: A 
Decade (2011-2021) of Hedonic Price Analysis" Manuscript (2022). Available at: 
http://works.bepress.com/george_parsons/65/ 

RIGIS. https://www.rigis.org/. Accessed November 10, 2021 
Shuman, C. (2015) “B.I. Wind Farm Foundations Installed” The Block Island Times, September 

25, 2015. Accessed April 27, 2022.  
Sunak, Y., & Madlener, R. (2016). The impact of wind farm visibility on property values: A 

spatial difference-in-differences analysis. Energy Economics, 55, 79–91. 
https://doi.org/10.1016/j.eneco.2015.12.025 

The National Renewable Energy Laboratory. The Wind Rises: Market Report Shows 
Electrifying Future for U.S. Offshore Wind Industry. 
https://www.nrel.gov/news/program/2021/offshore-wind-market-gains.html. Accessed 
November 22, 2021 

Trandafir, S., Gaur, V., Behanan, P., Uchida, E., Lang, C., & Miao, H. (2020). How Are Tourists 
Affected By Offshore Wind Turbines? A Case Study Of The First US Offshore Wind 
Farm. Journal of Ocean and Coastal Economics, 7(1), 1.  

Vyn, R. J. (2018). Property Value Impacts of Wind Turbines and the Influence of Attitudes 
toward Wind Energy. Land Economics, 94(4), 496–516. https://doi.org/10.3368/le.94.4.496 

 
 
 

https://www.rigis.org/
https://www.nrel.gov/news/program/2021/offshore-wind-market-gains.html
https://doi.org/10.3368/le.94.4.496


23 

Figures and Tables  

 
 
Figure 1: Study area 

 

 
 
 
  



24 

 
 
 
 
 
Figure 2: Turbine viewshed for small area on mainland of Rhode Island 
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Figure 3: Housing price trends for properties with and without turbine views 

 
Notes: A version of Equation 1 that excludes turbineview is estimated and residuals are calculated. The figure plots 
the mean residuals for properties that have a turbine view post construction and those that do not by year. The 
vertical line indicates the date of the BIWF construction. 

 
  

-.2
-.1

0
.1

.2
.3

Av
er

ag
e l

og
 h

ou
se

 p
ric

e

2005 2007 2009 2011 2013 2015 2017 2019
Year

no view view



26 

 

 

 

 

 

 

 

 

Table1: Housing summary statistics 

Variables Mean Standard 
Deviation 

Sales price ($1000) 560.16 777.16 
Turbineview (1 = yes) 0.15 0.36 
Post turbineview (1 = yes) 0.05 0.21 
Post (1 = yes) 0.30 0.46 
Ocean view 0.41 1.10 
Pond view  0.06 0.29 
Bedrooms 3.11 0.91 
Bathrooms 2.37 1.10 
Living area (1000sq. ft.) 3.59 1.78 
Lot size (1000sq. ft.) 27.24 49.23 
Air conditioner (1 = yes) 0.40 0.49 
Building year 1971.41 31.67 
Distance to waterbody (km) 0.81 0.73 
Distance to nearest turbine (km) 33.99 3.89 
Observations 11058   
Notes: Bathrooms is full plus half baths. Ocean view is the number of visible points on the 
ocean from a house. Pond view is the number of visible points on coastal ponds from a house. 
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Table 2: Impact of offshore wind turbine views on housing prices 

Variables 
Dependent variable: Log sale price 
(1) (2) (3) 

Turbineview 0.054 0.016  

  (0.035) (0.021)  
Post -0.016 0.003 0.007 

  (0.023) (0.021) (0.087) 
Post turbineview -0.004 -0.001 0.124 

  (0.018) (0.020) (0.089) 
Ocean view 0.084 0.065  

  (0.011)*** (0.012)***  
Pond view 0.023 0.020  

  (0.021) (0.016)  
Distance to water dummies    

 0-0.1 km 0.676 0.479  

  (0.075)*** (0.037)***  

 0.1-0.25 km 0.366 0.168  

  (0.066)*** (0.030)***  

 0.25-0.5 km 0.265 0.078  

  (0.050)*** (0.018)***  

 0.5-1.0 km 0.136 0.040  

  (0.046)*** (0.017)**  
Property controls Yes Yes No 
Year FEs Yes Yes Yes 
Month FEs Yes Yes Yes 
Census Block Group FEs No Yes No 
Property FEs No No Yes 
Observations 11,058 11,058 6,665 
R-
squared 

 0.531 0.617 0.883 
Notes: Table presents results from three separate regressions. Sample includes properties in Washington 
County, Rhode Island that are within 3 km of the coast and transact in the years 2005-2020. Property 
control variables are lot size, lot size squared, living area, living area squared, number of bedrooms, 
number of bathrooms, a cubic polynomial of construction year, and an indicator for air conditioning. 
Standard errors are shown in parentheses and are clustered at the tract level. *, **, and *** indicate 
significance at 10%, 5%, and 1%, respectively. 
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Table 3: Robustness checks 
Sample period 2005-2020  2010-2020 

Distance from coast 
restrictions < 3 km < 2 km < 1 km Water view only   < 3 km < 2 km < 1 km Water view only 

Panel A: Cross Sectional          
Post turbineview -0.001 -0.005 -0.009 0.040  -0.012 -0.012 -0.016 0.043 

 
 (0.020) (0.020) (0.023) (0.040)  (0.021) (0.022) (0.028) (0.043) 

Observations 11,058 9,981 7,788 2,072  7,752 6,998 5,493 1,486 
R-squared  0.617 0.620 0.601 0.563  0.640 0.641 0.625 0.607 

           
Panel B: Repeat Sales         

 
Post turbineview 0.124 0.129 0.122 0.130  0.109 0.112 0.101 0.168 

 
 (0.089) (0.096) (0.104) (0.266)  (0.070) (0.079) (0.091) (0.348) 

Observations 6,665 5,909 4,415 994  4,567 4,054 3,023 696 
R-squared   0.883 0.886 0.886 0.884   0.911 0.915 0.917 0.922 
Notes: Table presents results from 16 regressions; each column of each panel is a different regression. Sample includes properties in Washington County, 
Rhode Island with sample cuts based on year of transaction, distance to the coast, and water view (ocean + pond view >0). The dependent variable is log sales 
price. For Panel A, the regression specification includes property characteristics (as defined in Table 2), distance to water dummies, year fixed effects, month 
fixed effects, and census block group fixed effects. For Panel B, the regression specification includes year fixed effects, month fixed effects, and property 
fixed effects. Standard errors are shown in parentheses and are clustered at the tract level. *, **, and *** indicate significance at 10%, 5%, and 1%, 
respectively. 
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Table 4: Estimates of the impact of offshore wind turbine view on Block Island housing 
prices 

Variables 
Sample period 

2005-2020 2010-2020 
Post turbineview -0.048 -0.035 
  (0.115) (0.120) 
Ocean view 0.053 0.083 
  (0.023)** (0.027)*** 
Pond view -0.022 -0.135 
  (0.072) (0.089) 
Distance to water dummies   
 0-0.1 km 0.552 0.556 
  (0.128)*** (0.159)*** 
 0.1-0.25 km 0.246 0.273 
  (0.088)*** (0.106)** 
 0.25-0.5 km -0.081 -0.061 
  (0.081) (0.100) 
Year FEs Yes Yes 
Property controls Yes Yes 
Census Block Group FEs Yes Yes 
Observations 307 217 
R-squared 0.406 0.394 
Notes: Table presents two different regression models. The dependent variable is log sales price. Sample 
includes properties on Block Island, Rhode Island, with sample cuts based on year of transaction defined 
differently in each column. Property control variables are lot size, lot size squared, number of bedrooms, 
number of bathrooms, and a quadratic polynomial of construction year. Robust standard errors are shown in 
parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively. 
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